gotensor/optimizer_test.go

210 lines
5.3 KiB
Go

package gotensor
import (
"math"
"testing"
"git.kingecg.top/kingecg/gomatrix"
)
func NewMatrix(data [][]float64) (*gomatrix.Matrix, error) {
c := make([]float64, len(data)*len(data[0]))
for i := 0; i < len(c); i++ {
c[i] = data[i/len(data[0])][i%len(data[0])]
}
return gomatrix.NewMatrix(c, []int{len(data), len(data[0])})
}
// TestSGD 测试SGD优化器
func TestSGD(t *testing.T) {
// 创建一些参数用于测试
weightData, _ := NewMatrix([][]float64{{1.0, 2.0}, {3.0, 4.0}})
weightGrad, _ := NewMatrix([][]float64{{0.1, 0.2}, {0.3, 0.4}})
params := []*Tensor{
{
Data: Must(gomatrix.NewMatrix([]float64{1.0, 2.0, 3.0}, []int{3, 1})),
Grad: Must(gomatrix.NewMatrix([]float64{0.1, 0.2, 0.3}, []int{3, 1})),
},
{
Data: weightData,
Grad: weightGrad,
},
}
// 创建SGD优化器
lr := 0.1
sgd := NewSGD(params, lr)
// 保存原始参数值
origVec0, _ := params[0].Data.Get(0, 0)
origMat00, _ := params[1].Data.Get(0, 0)
// 执行一步优化
sgd.Step()
// 检查参数是否已更新
newVec0, _ := params[0].Data.Get(0, 0)
newMat00, _ := params[1].Data.Get(0, 0)
expectedVec0 := origVec0 - lr*0.1
expectedMat00 := origMat00 - lr*0.1
if math.Abs(newVec0-expectedVec0) > 1e-9 {
t.Errorf("Expected updated param[0][0] to be %v, got %v", expectedVec0, newVec0)
}
if math.Abs(newMat00-expectedMat00) > 1e-9 {
t.Errorf("Expected updated param[1][0,0] to be %v, got %v", expectedMat00, newMat00)
}
// 测试ZeroGrad
sgd.ZeroGrad()
for _, param := range params {
shape := param.Shape()
for i := 0; i < param.Size(); i++ {
var gradVal float64
if len(shape) == 1 {
gradVal, _ = param.Grad.Get(i)
} else if len(shape) == 2 {
cols := shape[1]
gradVal, _ = param.Grad.Get(i/cols, i%cols)
}
if math.Abs(gradVal) > 1e-9 {
t.Errorf("Expected gradient to be zero after ZeroGrad, got %v", gradVal)
}
}
}
}
// TestAdam 测试Adam优化器
func TestAdam(t *testing.T) {
// 创建一些参数用于测试
params := []*Tensor{
{
Data: Must(gomatrix.NewMatrix([]float64{1.0, 2.0}, []int{2, 1})),
Grad: Must(gomatrix.NewMatrix([]float64{0.1, 0.2}, []int{2, 1})),
},
}
// 创建Adam优化器
lr := 0.001
beta1 := 0.9
beta2 := 0.999
epsilon := 1e-8
adam := NewAdam(params, lr, beta1, beta2, epsilon)
// 保存原始参数值
origVec0, _ := params[0].Data.Get(0, 0)
// 执行几步优化
for i := 0; i < 3; i++ {
adam.Step()
}
// 检查参数是否已更新
newVec0, _ := params[0].Data.Get(0, 0)
if math.Abs(newVec0-origVec0) < 1e-9 {
t.Errorf("Expected parameter to be updated, but it wasn't. Original: %v, New: %v", origVec0, newVec0)
}
// 验证内部状态是否已创建
if len(adam.M) != len(params) || len(adam.V) != len(params) {
t.Error("Adam internal states M and V not properly initialized")
}
// 测试ZeroGrad
adam.ZeroGrad()
for _, param := range params {
shape := param.Shape()
for i := 0; i < param.Size(); i++ {
var gradVal float64
if len(shape) == 1 {
gradVal, _ = param.Grad.Get(i)
} else if len(shape) == 2 {
cols := shape[1]
gradVal, _ = param.Grad.Get(i/cols, i%cols)
}
if math.Abs(gradVal) > 1e-9 {
t.Errorf("Expected gradient to be zero after ZeroGrad, got %v", gradVal)
}
}
}
}
// TestAdamWithMatrix 测试Adam优化器处理矩阵参数
func TestAdamWithMatrix(t *testing.T) {
matrixData, _ := NewMatrix([][]float64{{1.0, 2.0}, {3.0, 4.0}})
matrixGrad, _ := NewMatrix([][]float64{{0.1, 0.2}, {0.3, 0.4}})
// 创建矩阵参数用于测试
params := []*Tensor{
{
Data: matrixData,
Grad: matrixGrad,
},
}
// 创建Adam优化器
lr := 0.001
adam := NewAdam(params, lr, 0.9, 0.999, 1e-8)
// 验证内部状态是否已正确创建
if len(adam.M) != len(params) || len(adam.V) != len(params) {
t.Fatalf("Adam internal states M and V not properly initialized. Expected %d states, got M:%d, V:%d",
len(params), len(adam.M), len(adam.V))
}
// 验证内部状态矩阵的形状与参数一致
mShape := adam.M[0]["tensor"].Shape()
vShape := adam.V[0]["tensor"].Shape()
paramShape := params[0].Shape()
if mShape[0] != paramShape[0] || mShape[1] != paramShape[1] ||
vShape[0] != paramShape[0] || vShape[1] != paramShape[1] {
t.Errorf("Adam internal state shapes don't match parameter shape. "+
"Param: %v, M: %v, V: %v", paramShape, mShape, vShape)
}
// 保存原始参数值的副本
originalData := make([][]float64, paramShape[0])
for i := 0; i < paramShape[0]; i++ {
originalData[i] = make([]float64, paramShape[1])
for j := 0; j < paramShape[1]; j++ {
originalData[i][j], _ = params[0].Data.Get(i, j)
}
}
// 执行几步优化
for i := 0; i < 5; i++ {
adam.Step()
}
// 检查所有参数是否已更新
updated := false
for i := 0; i < paramShape[0]; i++ {
for j := 0; j < paramShape[1]; j++ {
newVal, _ := params[0].Data.Get(i, j)
if math.Abs(newVal-originalData[i][j]) > 1e-9 {
updated = true
return
}
}
}
if !updated {
t.Errorf("Expected parameters to be updated, but none were changed")
}
// 额外验证更新值是否合理(应该向梯度相反方向移动)
firstOrig := originalData[0][0]
firstNew, _ := params[0].Data.Get(0, 0)
firstGrad, _ := params[0].Grad.Get(0, 0)
// 参数应该沿着梯度的反方向更新
if (firstNew-firstOrig)*firstGrad > 0 {
t.Errorf("Parameter updated in wrong direction. delta=%v, grad=%v",
firstNew-firstOrig, firstGrad)
}
}