test(model): 修复矩阵形状不匹配的测试用例

- 将bias从vector改为1x2矩阵以匹配输出形状
- 更新梯度初始化为矩阵格式而非向量
- 修改输入数据创建方式,使用NewMatrix替代NewVector
- 调整期望输出计算逻辑以正确处理矩阵运算

fix(optimizer): 修复Adam优化器在矩阵参数下的索引访问

- 添加对1维和2维形状的分别处理逻辑
- 修正一阶矩和二阶矩估计的索引访问方式
- 确保矩阵参数的每个元素都能正确更新

test(optimizer): 增强优化器测试覆盖矩阵参数场景

- 添加矩阵参数的Adam优化器测试用例
- 验证内部状态矩阵形状与参数保持一致
- 确保参数沿梯度反方向正确更新
```
This commit is contained in:
kingecg 2026-01-01 15:44:04 +08:00
parent 16c2277474
commit 28cf1f533a
3 changed files with 155 additions and 56 deletions

View File

@ -57,7 +57,7 @@ func TestSequential(t *testing.T) {
if err != nil {
t.Fatalf("Failed to create weight matrix: %v", err)
}
bias, err := gomatrix.NewMatrix([]float64{0.5, 0.5}, []int{2})
bias, err := gomatrix.NewMatrix([]float64{0.5, 0.5}, []int{1, 2}) // 改为 1x2 矩阵以匹配输出形状
if err != nil {
t.Fatalf("Failed to create bias vector: %v", err)
}
@ -69,7 +69,7 @@ func TestSequential(t *testing.T) {
},
Bias: &Tensor{
Data: bias,
Grad: Must(gomatrix.NewVector([]float64{0, 0})),
Grad: Must(gomatrix.NewMatrix([]float64{0, 0}, []int{1, 2})),
},
}
@ -79,7 +79,13 @@ func TestSequential(t *testing.T) {
}
// 测试前向传播
input := Must(NewVector([]float64{1, 1}))
inputData, err := gomatrix.NewMatrix([]float64{1, 1}, []int{1, 2})
if err != nil {
t.Fatalf("Failed to create input vector: %v", err)
}
input := &Tensor{
Data: inputData,
}
output, err := seq.Forward(input)
if err != nil {
t.Errorf("Sequential forward failed: %v", err)
@ -121,9 +127,9 @@ func TestSaveLoadModel(t *testing.T) {
if err != nil {
t.Fatalf("Failed to create weight matrix: %v", err)
}
bias, err := gomatrix.NewVector([]float64{0.5, 0.5})
bias, err := gomatrix.NewMatrix([]float64{0.5, 0.5}, []int{1, 2}) // 改为 1x2 矩阵以匹配输出形状
if err != nil {
t.Fatalf("Failed to create bias vector: %v", err)
t.Fatalf("Failed to create bias matrix: %v", err)
}
linearLayer := &Linear{
@ -133,7 +139,7 @@ func TestSaveLoadModel(t *testing.T) {
},
Bias: &Tensor{
Data: bias,
Grad: Must(gomatrix.NewVector([]float64{0, 0})),
Grad: Must(gomatrix.NewMatrix([]float64{0, 0}, []int{1, 2})),
},
}
@ -169,21 +175,42 @@ func TestSaveLoadModel(t *testing.T) {
// TestLinearLayer 测试线性层功能
func TestLinearLayer(t *testing.T) {
weight := Must(NewTensor([]float64{2, 0, 0, 3}, []int{2, 2}))
bias := Must(NewVector([]float64{0.5, 0.5}))
weightData, err := gomatrix.NewMatrix([]float64{2, 0, 0, 3}, []int{2, 2})
if err != nil {
t.Fatalf("Failed to create weight matrix: %v", err)
}
weight := &Tensor{
Data: weightData,
Grad: Must(gomatrix.NewMatrix([]float64{0, 0, 0, 0}, []int{2, 2})),
}
biasData, err := gomatrix.NewMatrix([]float64{0.5, 0.5}, []int{1, 2}) // 改为 1x2 矩阵
if err != nil {
t.Fatalf("Failed to create bias vector: %v", err)
}
bias := &Tensor{
Data: biasData,
Grad: Must(gomatrix.NewVector([]float64{0, 0})),
}
layer := NewLinear(weight, bias)
// 测试前向传播
input := Must(NewVector([]float64{1, 1}))
inputData, err := gomatrix.NewMatrix([]float64{1, 1}, []int{1, 2})
if err != nil {
t.Fatalf("Failed to create input vector: %v", err)
}
input := &Tensor{
Data: inputData,
}
output, err := layer.Forward(input)
if err != nil {
t.Fatalf("Linear layer forward failed: %v", err)
}
// 计算期望输出: weight * input + bias = [[2,0],[0,3]] * [1,1] + [0.5,0.5] = [2.5,3.5]
expected0, _ := output.Data.Get(0)
expected1, _ := output.Data.Get(1)
// 计算期望输出: input * weight^T + bias = [1,1] * [[2,0],[0,3]]^T + [0.5,0.5] = [1,1] * [[2,0],[0,3]] + [0.5,0.5] = [2,3] + [0.5,0.5] = [2.5,3.5]
expected0, _ := output.Data.Get(0, 0)
expected1, _ := output.Data.Get(0, 1)
if math.Abs(expected0-2.5) > 1e-9 {
t.Errorf("Expected output[0] to be 2.5, got %v", expected0)

View File

@ -164,18 +164,38 @@ func (a *Adam) Step() {
// 计算偏差修正的一阶矩估计
mHatData := make([]float64, param.Size())
mHatShape := shape
for idx := 0; idx < param.Size(); idx++ {
mVal, _ := newM.Data.Get(idx)
mHatData[idx] = mVal / (1 - math.Pow(a.Beta1, float64(a.T)))
if len(shape) == 1 {
for idx := 0; idx < shape[0]; idx++ {
mVal, _ := newM.Data.Get(idx)
mHatData[idx] = mVal / (1 - math.Pow(a.Beta1, float64(a.T)))
}
} else if len(shape) == 2 {
rows, cols := shape[0], shape[1]
for r := 0; r < rows; r++ {
for c := 0; c < cols; c++ {
mVal, _ := newM.Data.Get(r, c)
mHatData[r*cols+c] = mVal / (1 - math.Pow(a.Beta1, float64(a.T)))
}
}
}
mHat, _ := NewTensor(mHatData, mHatShape)
// 计算偏差修正的二阶矩估计
vHatData := make([]float64, param.Size())
vHatShape := shape
for idx := 0; idx < param.Size(); idx++ {
vVal, _ := newV.Data.Get(idx)
vHatData[idx] = vVal / (1 - math.Pow(a.Beta2, float64(a.T)))
if len(shape) == 1 {
for idx := 0; idx < shape[0]; idx++ {
vVal, _ := newV.Data.Get(idx)
vHatData[idx] = vVal / (1 - math.Pow(a.Beta2, float64(a.T)))
}
} else if len(shape) == 2 {
rows, cols := shape[0], shape[1]
for r := 0; r < rows; r++ {
for c := 0; c < cols; c++ {
vVal, _ := newV.Data.Get(r, c)
vHatData[r*cols+c] = vVal / (1 - math.Pow(a.Beta2, float64(a.T)))
}
}
}
vHat, _ := NewTensor(vHatData, vHatShape)

View File

@ -1,53 +1,63 @@
package gotensor
import (
"testing"
"math"
"testing"
"git.kingecg.top/kingecg/gomatrix"
)
func NewMatrix(data [][]float64) (*gomatrix.Matrix, error) {
c := make([]float64, len(data)*len(data[0]))
for i := 0; i < len(c); i++ {
c[i] = data[i/len(data[0])][i%len(data[0])]
}
return gomatrix.NewMatrix(c, []int{len(data), len(data[0])})
}
// TestSGD 测试SGD优化器
func TestSGD(t *testing.T) {
// 创建一些参数用于测试
weightData, _ := NewMatrix([][]float64{{1.0, 2.0}, {3.0, 4.0}})
weightGrad, _ := NewMatrix([][]float64{{0.1, 0.2}, {0.3, 0.4}})
params := []*Tensor{
{
Data: Must(NewVector([]float64{1.0, 2.0, 3.0})),
Grad: Must(NewVector([]float64{0.1, 0.2, 0.3})),
Data: Must(gomatrix.NewMatrix([]float64{1.0, 2.0, 3.0}, []int{3, 1})),
Grad: Must(gomatrix.NewMatrix([]float64{0.1, 0.2, 0.3}, []int{3, 1})),
},
{
Data: weightData,
Grad: weightGrad,
},
}
// 创建SGD优化器
lr := 0.1
sgd := NewSGD(params, lr)
// 保存原始参数值
origVec0, _ := params[0].Data.Get(0)
origVec0, _ := params[0].Data.Get(0, 0)
origMat00, _ := params[1].Data.Get(0, 0)
// 执行一步优化
sgd.Step()
// 检查参数是否已更新
newVec0, _ := params[0].Data.Get(0)
newVec0, _ := params[0].Data.Get(0, 0)
newMat00, _ := params[1].Data.Get(0, 0)
expectedVec0 := origVec0 - lr*0.1
expectedMat00 := origMat00 - lr*0.1
if math.Abs(newVec0-expectedVec0) > 1e-9 {
t.Errorf("Expected updated param[0][0] to be %v, got %v", expectedVec0, newVec0)
}
if math.Abs(newMat00-expectedMat00) > 1e-9 {
t.Errorf("Expected updated param[1][0,0] to be %v, got %v", expectedMat00, newMat00)
}
// 测试ZeroGrad
sgd.ZeroGrad()
for _, param := range params {
@ -72,38 +82,38 @@ func TestAdam(t *testing.T) {
// 创建一些参数用于测试
params := []*Tensor{
{
Data: Must(NewVector([]float64{1.0, 2.0})),
Grad: Must(NewVector([]float64{0.1, 0.2})),
Data: Must(gomatrix.NewMatrix([]float64{1.0, 2.0}, []int{2, 1})),
Grad: Must(gomatrix.NewMatrix([]float64{0.1, 0.2}, []int{2, 1})),
},
}
// 创建Adam优化器
lr := 0.001
beta1 := 0.9
beta2 := 0.999
epsilon := 1e-8
adam := NewAdam(params, lr, beta1, beta2, epsilon)
// 保存原始参数值
origVec0, _ := params[0].Data.Get(0)
origVec0, _ := params[0].Data.Get(0, 0)
// 执行几步优化
for i := 0; i < 3; i++ {
adam.Step()
}
// 检查参数是否已更新
newVec0, _ := params[0].Data.Get(0)
newVec0, _ := params[0].Data.Get(0, 0)
if math.Abs(newVec0-origVec0) < 1e-9 {
t.Errorf("Expected parameter to be updated, but it wasn't. Original: %v, New: %v", origVec0, newVec0)
}
// 验证内部状态是否已创建
if len(adam.M) != len(params) || len(adam.V) != len(params) {
t.Error("Adam internal states M and V not properly initialized")
}
// 测试ZeroGrad
adam.ZeroGrad()
for _, param := range params {
@ -127,7 +137,7 @@ func TestAdam(t *testing.T) {
func TestAdamWithMatrix(t *testing.T) {
matrixData, _ := NewMatrix([][]float64{{1.0, 2.0}, {3.0, 4.0}})
matrixGrad, _ := NewMatrix([][]float64{{0.1, 0.2}, {0.3, 0.4}})
// 创建矩阵参数用于测试
params := []*Tensor{
{
@ -135,23 +145,65 @@ func TestAdamWithMatrix(t *testing.T) {
Grad: matrixGrad,
},
}
// 创建Adam优化器
lr := 0.001
adam := NewAdam(params, lr, 0.9, 0.999, 1e-8)
// 保存原始参数值
origMat00, _ := params[0].Data.Get(0, 0)
// 验证内部状态是否已正确创建
if len(adam.M) != len(params) || len(adam.V) != len(params) {
t.Fatalf("Adam internal states M and V not properly initialized. Expected %d states, got M:%d, V:%d",
len(params), len(adam.M), len(adam.V))
}
// 验证内部状态矩阵的形状与参数一致
mShape := adam.M[0]["tensor"].Shape()
vShape := adam.V[0]["tensor"].Shape()
paramShape := params[0].Shape()
if mShape[0] != paramShape[0] || mShape[1] != paramShape[1] ||
vShape[0] != paramShape[0] || vShape[1] != paramShape[1] {
t.Errorf("Adam internal state shapes don't match parameter shape. "+
"Param: %v, M: %v, V: %v", paramShape, mShape, vShape)
}
// 保存原始参数值的副本
originalData := make([][]float64, paramShape[0])
for i := 0; i < paramShape[0]; i++ {
originalData[i] = make([]float64, paramShape[1])
for j := 0; j < paramShape[1]; j++ {
originalData[i][j], _ = params[0].Data.Get(i, j)
}
}
// 执行几步优化
for i := 0; i < 5; i++ {
adam.Step()
}
// 检查参数是否已更新
newMat00, _ := params[0].Data.Get(0, 0)
if math.Abs(newMat00-origMat00) < 1e-9 {
t.Errorf("Expected parameter to be updated, but it wasn't. Original: %v, New: %v", origMat00, newMat00)
// 检查所有参数是否已更新
updated := false
for i := 0; i < paramShape[0]; i++ {
for j := 0; j < paramShape[1]; j++ {
newVal, _ := params[0].Data.Get(i, j)
if math.Abs(newVal-originalData[i][j]) > 1e-9 {
updated = true
return
}
}
}
}
if !updated {
t.Errorf("Expected parameters to be updated, but none were changed")
}
// 额外验证更新值是否合理(应该向梯度相反方向移动)
firstOrig := originalData[0][0]
firstNew, _ := params[0].Data.Get(0, 0)
firstGrad, _ := params[0].Grad.Get(0, 0)
// 参数应该沿着梯度的反方向更新
if (firstNew-firstOrig)*firstGrad > 0 {
t.Errorf("Parameter updated in wrong direction. delta=%v, grad=%v",
firstNew-firstOrig, firstGrad)
}
}